Effects of Chromatic Adaptation on the Photochemical Apparatus of Photosynthesis in Porphyridium cruentum.

نویسندگان

  • A C Ley
  • W L Butler
چکیده

Cells of Porphyridium cruentum were grown in different colors of light which would be absorbed primarily by chlorophyll (Chl) (red and blue light) or by the phycobilisomes (green or two intensities of cool-white fluorescent light), and samples of these cells were frozen to -196 C for measurements of absorption and fluorescence emission spectra. Cells grown in the high intensity white light had least of all of the photosynthetic pigments, a higher ratio of carotenoid/Chl, but essentially the same ratio of phycobilin to Chl as cells grown in the low intensity white light. The ratio of photosystem II (PSII) to photosystem I (PSI) pigments was affected by light quality; the ratios of phycobilin to Chl and of short wavelength (PSII) Chl to long wavelength (PSI) Chl were both greater in the cells grown in red or blue light.Light quality also exerted a strong influence on the structural and functional organization of the photochemical apparatus. Data on the relative optical cross-sections of PSI and PSII as a function of excitation wavelength indicate that cells grown in light absorbed primarily by the phycobilisomes package a large fraction of their Chl into PSI (PSI Chl/PSII Chl approximately 20), whereas cells grown in light absorbed by Chl distribute their Chl much more equitably (PSI Chl/PSII Chl approximately 1.5). In both types of cells the phycobilisomes transfer their excitation energy predominantly to PSII Chl with little or no direct energy transfer to PSI, but the yield of energy transfer from PSII to PSI is approximately twice as large for cells grown in the phycobilin wavelengths of light. These differences in functional organization and energy distribution account for the physiological expressions of chromatic adaptation. The effects of chromatic adaptation on O(2) evolution can be predicted from our calculations of energy distribution between PSI and PSII for cells grown in the different colors of light.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Changes in quantum yield of photosynthesis in the red alga Porphyridium cruentum caused by stepwise reduction in the intensity of light preferentially absorbed by the phycobilins.

This paper describes the relation between the quantum yield of photosynthesis in the red alga Porphyridium cruentum, and the spectral composition of light, changed by filtering white light through aqueous phycobilin solutions of increasing optical density. At sufficiently high densities of the filter solution, no measurable photosynthesis can be observed, although chlorophyll a molecules are st...

متن کامل

The Quantum Yield of Photosynthesis in Porphyridium cruentum, and the Role of Chlorophyll a in the Photosynthesis of Red Algae

Quantum yield measurements were made with the red alga Porphyridium cruentum, cultured so as to give different proportions of chlorophyll and phycobilins. Totally absorbing suspensions were used so that there was no uncertainty in the amount of energy absorbed. These measurements have shown that chlorophyll, in this alga, has a photosynthetic efficiency as high as in other algal groups, and hig...

متن کامل

Inhibition of Photosynthesis in Certain Algae by Extreme Red Light.

This paper shows that in Porphyridium cruentum and in Chlorella pyrenoidosa (but apparently not in Anacystis nidulans) "extreme red" light (> 720 mmu) can inhibit photosynthesis produced by "far red" light (up to 720 mmu). From the action spectrum of this phenomenon, it appears that an unknown pigment with an absorption band around 745 mmu must be responsible for it.

متن کامل

Effects of agitation on the microalgae Phaeodactylum tricornutum and Porphyridium cruentum.

The effect of mechanical agitation on the microalgae Phaeodactylum tricornutum and Porphyridium cruentum was investigated in aerated continuous cultures with and without the added shear protectant Pluronic F68. Damage to cells was quantified through a decrease in the steady state concentration of the biomass in the photobioreactor. For a given aeration rate, the steady state biomass concentrati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 65 4  شماره 

صفحات  -

تاریخ انتشار 1980